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SECTION I

FORMULATION AND SOLUTIONS

An approximate theory to define the stress field within a composite
laminate has recently been developed [1]. It is the purpose of the present
communication to derive the solution for a significant class of stress con-
centration boundary value problems in composite laminates, namely, the

free edge problem [2, 3], based upon this new theory.

As discussed in Reference 1, we consider a symmetric laminate in which each
layer is reinforced by a system of parallel fibers oriented at an angle 6 with
the x-axis (see Fig. 1 of [1]) where the origin of coordinates is located at |
the center of the laminate. The body is subjected to forces applied only on
the ends such that a constant axial strain e e is imponsed. Each layer is
also under the influence of expansional strains ei (i=1,2,3,6) which we 4
assume are constants. We also assume perfect bonding between adjacent
layers. Hence, the stress field in this class of problems is a function of
y and z alone. The laminate consists of N layers which are identified by the
index k (k = 1,2,***N). As in [1], we shall drop the index k except when

it is needed for clarity.

To begin, we define the deformation measures e, « , and expansion-
i

g

al deformations QB as

- h_ i _}l“ e, * h - -
el B S Wy e = 3 v,y 5 e3 = 3w ’ e6 = 3 (a, +v,x\
_- . 5h A 5v* = Bh A 5u™
e4 A (w.y- s ) > » es ¥ (w, -w, )+ >
(1) ‘
2 2 |
K = h—'u? y K = 1’—1“\'* K = -5-h(3\/&\/ w = : " y |
1 4 x 2 4 Ty 3 2 ) e ke = T(u,y+v,x)
a = he i
B g
1
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where lower case Latin subscripts have the range 1,2, 3,4,5,6 and Greek
subscripts assume the values 1,2, 3,6. Letting Sij represent the (mono-

clinic) compliance matrix as given by eq. (12) of [1], we make the further

definitions
1 - i
A 5 (9, 775 B3 95,55,
(2)
4 & =1
Bij 3 [Sij i 7 631 633' 533]

where 6i' is the Kronecker delta and the superscript -1 stands for matrix
inverse. Throughout this work, summation over the range of repeated sub-
scripts, but not superscripts, is implied. We may now invert the consti-

tutive relations, (25) of [1], to get

A S h
35 33
= A - —_—_—
N i a) # e k)
2
B. 8 K
3a 33
Me = Thg's e (P Py
(3)
V5 Re R, e
" 44 4588 ™ g2 V1T
v =X PR e R
x = Paety 55% * 2\t Y

where standard contracted notation has been employed in the first two

expressions, following the subscript relations given in (8) and (9) of [1].

Since the stresses in the present class of boundary value problems
only depend on y and z, it follows that the force and moment resultants and
the interlaminar stresses will only depend on y. Hence, from (3), the de-

formation measures are functions of y alone and by use of eqs. (1), it can
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be shown that the most general form of the weighted displacements is given

by
u = Uy) + <, Xy o c,x
¢, x
v = Viy) - 2 & c X
hw = W( 6 35" & 3
w = y) - G X & 4
(4)
u ¢'(Y) < C6X
v¥ = Q(y) + X
w* = B(y)
hw = 2 Sdw
w = Xly) - c5xy 06x c4x
where U --- X are arbitrary functions of y and ¢, --- ¢, are constants.

1 6
We should recall that eqs. (1) - (4) must be written for each layer.
We now substitute egs. (4) into (1), then into (3), and finally into
the equilibrium equations, (26) of [1], in which the x dependence is dropped

to establish the following relations

A b A h A..S. h Ak
EE L €6 sry . 2333 . " o 12

PPl s e e e T R e Bt Tl
AN A, B A S % A h
__2-6_‘ " 1 66 " 36 33 1 1 * - 16

> v o+ 3A36¢ + 2 u" 4 10 (p1 + pz) + t2 - tl S cl
Bzzhz 5 Bzehz 5 5

1" = (" ' W e S Va
T Q'+ $B X Wy =Syl 2A G 2A (W x4
3

i
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2
B..S. .h
23°33 St B !
* 28 (py- Py} * T35 + 8;) = 8,5 (c - 2cyy)
2 2
B. h 5B B, . h 5A
26 36 66 55 5 '
T G 0 - W ) - ¥ -3 AW X +4Q)
2
B..S..h
3633 e Ry N
28 (By-Byht G5 B vl = Lhc, fo- Zeoy)
Ak A_h 2
23 36 ., _h_ e
5 VL 3A33¢>+ u' + (A33 33" ) (pl+ Py + lz(sl- s}) =
o A_h
13 36
s leyte ) —5—c ¢ A3‘3 ag (5 cont'd)
o s 5 h 5
3 V't g Ay (WX 4 4pyp + (s tEY) = S A
5B 25B 5B,
25 S ' AL A i it =
5 Q'+ o —(3X- W)+ —— ¢r + (51333 33~ 14) (P,- Py ) - T5(s]*85) =
Sy 28 5B 4S5
- 2 i 2

which are also valid within each layer. The remaining field equations, the
interface continuity conditions, are given by substituting (4) into (27) of [1],
which gives

h 5. 5 W h EhR)
{_ 2¢v = EQ+ 8X'_ Sl [544(381-Sz)+S45(3t1-t2)]} - {V )

(k+1) (k)

5 5 wt h ti
—8‘)(' + o + 12 [544(382- Sl)+ S45(3t2- tl”} = 3(05 25 CS)X
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(k) (k+1) (k+1) (k)
+ (c3- c3)x + 2 (c1 - cl)x

h fissl 5 s
v- 5 [545(3s1- 8,)+ 555(3t1-t2)j} - {U LWy = LS45(332 5))

5
o3
(k) (k+1)(k) (k) (k+1) (k+1)(k) (k) (k+1) (k+1)(k)
+ SSS( 3t2- tl)j 2 (c5+c5)y+(cl- c1 yxy + 3(C6+ c6)x + (cz- cz)x - Z(c4 + c4)
(l+1)
7 : LB z 15 i g B LT
533{. 5 Bt Tl (533 i A33>¢ = 7 B RN T Byl oy (3}333' 533) X
7A_.S 15B__S
15, 7 15 33°33 33533
o <s33 - 5By )W+ 5 Byhy hp1<6 S T T )
(k+1)
(6 cont'd)

el TA33535 15B,,544
Py 10 14

& . 5 7
s ' . O L a2
+533{ z Mam¥ +‘7‘1<s33 A33)‘7’ 3% 7

A 23533 15]?’33.533) it
P,

15 B M : (
*7 (5333' 533)w' 3 Pag TR\ 14
e (k) (k+1) (k+l) (k)
TAysSas 13854855 €g =5 Sk
b A T s ) T . e e
Kk Mkl Bel Ok
(k) (k+l)
<c6 ¢ ) 2] Sy (D (kH) (k4 () () (K
e x i (S,,A..h c. + S__,A. _h c))
L o 2 Bag MBS * P M3 )
(k+1)
7 7 15 15 d (k41)
4845 (3 Apgheytg Agghey- 57 Bygheye 5 Byghcys Th3p0)
(k)
7 7 15 15 : (K
+S33( 2Al31'1c2+ 2A%hc3+ ) Bl3hc6+ > B36hc5 7A3Buﬁ)
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Bod an () (k+1) (k) (k+1) (k)

t, = t, , By = By Py = Py (7)

for k=1,2 ««+ N-1.

Due to the symmetric lamination geometry, the interlaminar shear
stress components and the z displacement component, w, all vanish on the
central plane z = 0. We shall take advantage of these conditions by consid-
ering only the upper half of the laminate, i.e., z=0. Incorporating the
traction-free conditions on the upper surface, our boundary conditions on

the upper and lower surfaces become

(1)
2 asne o 7 15 ol L
s { A__hV +21( 3 A33> ¢ -2 A hU' +-2 B, hQ +22 (3B,,-5 )x

33 22 533 33
TAL S 15B__S
15( 7 ) 15 33035 33 33
+>—\5— - 5B W+=B_,hy' +hp <6— - )
2h S33 33 2 36 1 10 14 (8)
o (1 7A3:3S33 : 15B33S33) (l)_ 105 ( 2(l) +(1) (1)
pZ % To 14 = ——hl - csxy c4x— c6x )

(1)
3 7 7 15 15
Balg Mds g s BBl g e B 7 s gy

(1)

Wy W N om0

b= By 2y kR SRy 2N (9)

Since eqs. (6) and (8) must be satisfied for all values of x, it follows that
(k) (k) (k)

c4 — CS = 06 = 0 ) )2 [ R Y (10)

snd ) (M) (k+1) (k) (k+1) (k) 1)
Cl = Cl " cz — cz 5 c3 = c3 5 k = 1'2 ess N-1

so that cl, <, and c3 are the same for every layer.

6
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We now turn our attention to the edge boundary conditions, which
require considerctionof N , N , V. , M , M , s and s, for each layer
¥y = ¥y ¥ xy 1 2

ony =+b, since, as discussed in [1], only edge tractions are imposed in
the present class of boundary value problems. However, all these functions
cannot be independently prescribed because of the consequences of inter-
face continuity and global equilibrium of the entire laminate. That is, the
interface continuity c(cl):)lditions given by the seco(nlc)l of (H\I;nohibit arbitr"arily
prescribed values of s1 and S,e Furthermore, sl and 32 have already been
specified by (9) for all values of y. These relations, in conjunction with the
second equilibrium equation, see (26) of [1], can be used to establish the

result

N (k)
N = 0 (12)
r
which requires that
N (k) N (k)
N (b) - Ni(="b) " = 0 (13)
k21 ¥ kgl o

(k)

Therefore, only 2N- 1 values of Ny can be arbitrarily presc(ll'(i)bed on the
edges y = + b. We can make the same statement regarding ny since an
equation of the form (13) can be derived in similar fashion for this function.
Hence, the edge boundary conditions may be expressed as

(k) (k) (k) (k) (k)
N (b) = N_(b) = V by = M by = M by = 0 k=1,2:**N
g = N (b) = V (D) JE D) % D) ( )

(k) (k) (k)
Ny(-b) = N_(-b) = s,(xb) = 0 (k =1,2:¢«N-1) (14)

The present boundary value problem therefore, consists of differential

equations (5) and (6) subject to the boundary conditions (8), (9), and (14).
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The general solution for each dependent variable consists of the sum
of two parts: i) a complementary solution defined by the homogeneous form
of (5) - (9) and, ii) a particular solution. In the particular solution (denoted
by subscript P), the only nonvanishing functions are given by

(k) (k) (k) (k) (k) (k)

e, s A T W, = 32, (15

where ai (i = 1,2) are constants given by substituting (15) into (5), (6) and

(8) to get
(k) L 9 (o
= e = € = s
a, W (ABﬁaﬁ 13P% ) ) k 1,2 N
3A
33
(1) 2 (1) 7
a, = 121 (16)
(k+1) (k)
a a
(k+1) (k
hz = A al) + -2 , i = 1, 2 e N=
k+1 k
where we have put
2c, = € ' ¢, = €3 = 0 (17)
and e is the applied axial strain. The second condition, ¢, = 0, follows

1

from the procedure leading to (15) and (16), while <, is set to zero since it

has no effect on the stress field here.

Since the field equations are linear differential equations with constant
coefficients, the complementary solution (subscript H) for each dependent

variable consists of a series of terms of the form

(k) (k)

g F AV (18)
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(k) (k)
where f stands for any of the dependent variables and F are constants,

Substituting (18) into the homogeneous form of eqs. (5) - (9) leads to a
system of 13N linear algebraic equations. The values of A are determined
by setting the determinant of the coefficients equal to zero. Algebraic
expressions for the expansion of the determinant were not written owing to
the complexity of such expressions, even in the simplest cases. Rather,
computer calculated values of the determinant for specific values of A, as
discussed later, were employed to continue the analysis. Hence, it is not
possible to exhibit the mathematical details of the remaining steps in the

solution. Therefore, this phase of the work will be presented in a

descriptive fashion.

Although our determinant is too complex to evaluate in general terms,
we can examine the nature of its polynomial (in A) expansion in some detail
for fairly small values of N and extend the results by induction®., We can
also develop a procedure to search for terms in the determinant in which

the highest and lowest powers of A occur. Proceeding in this fashion for

values of N = 1 (in which case the interface continuity conditions are dropped)

2,3, and 4, we make the following observations: i) Only even powers of A
occur in the determinant, ii) The lowest power of A is /\4, and iii) The
highest power of A is AIZN-Z. Although these results are not perfectly
rigorous, no contradictions have been found. Furthermore, the number of

A roots is consistent with the number of edge boundary conditions, as dis-

cussed later.

An exception to the form (18) occurs with the appearance of repeated
roots for A. Since repeated zero roots always occur, it is necessary to
treat the corresponding part of the solution separately. In this part of the

solution, (18) is replaced by a third degree polynomial in y. Representing

the functions corresponding to the repeated zero roots by subscripts Ho, we

. ?
Although we have not done it here, it is possible to develop a program to
define the powers of A occurring in each term of the determinant for arbi-
trary values of N by use of a computer.
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find from the homogeneous form of (5)-(9) that the only

functions are given by

E (k)

l UHo : Gly i c:o
(k)
VHO = Aly + AO |
) (k)
Ho = Bo (19) |
(k) (k)
xHo 2 Eo ‘
(k) (k)
wHo = 3E0 1
where &
(k) (k)
' (k) (A .k + K . Cihk
! B T 3 231 361 Kk , k = 1,2 5e¢ N
‘ o 6A(k)
33
(1) (1)
E = KB (20)
(k+1) (k)
E (k) E (k+1)
ho ¢ B + - a0 3 k = 1,8 v N1
k+1 5 k o

The constants Ao and Co define rigid body translation of the laminate as a

unit. The remaining constants in (19) can all be expressed in terms of Al

and Cl. Hence, two constants which effect the stress distribution have been

introduced in the repeated zero part of the homogeneous solution.

The remaining portion of the complementary solution consists of

functions of the form (18) corresponding to the 12N- 6 nonzero values of A

(we are assuming that these roots are all distinct). These roots, which occur

10
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in combinations of the form + (axib), where b may vanish, were determined
by computing the value of the determinant for 6N- 2 values of )\2 and using
these results to solve for the coefficients of the equivalent polynomial. Once
the polynomial has been established, its roots can be determined through
standard computer routines. In the usual manner, one equation in the homo-
geneous version of (5)- (9) may be dropped and the reduced system used to
relate all but one of the arbitrary constants to the remaining constant for
each value of A. This procedure leads to 12N-6 arbitrary constants. These

constants, augmented by A and Cl, are evaluated via the 12N-4 edge

1
boundary conditions (14). Once these constants are defined, the complete

solution for any of the 13N functions appearing in (5)-(9) is given by

(k) N6 () A, (0 (R

f Fme + fHo+ fP

(21)
m=1

where the last two terms are defined by (15), (16), (19) and (20). The force
and moment resultants are now given by (3) upon using the results of (4)

and (1).

A special case arises in the solution that requires separate treatment.

This case is defined by the vanishing of compliance coefficients Sl6' 826'

836 and 545, as well as expansional strain e in every layer. The situation

arises when each layer is isotropic and/or oriented at an angle of 0° or 90°.
, (k) () (k) (k) (k)

This leads to the vanishing of U, ¢, t., t,, N , and M. Consequently,

12 Xy Xy

dropping the appropriate field equations and boundary conditions we find

that setting the determinant to zero leads to only two zero roots for A and

8N-4 nonzero roots. The number of boundary conditions (14) reduces to

8N-3. Otherwise, the treatment presented here remains unchanged.

The occurrence of very large magnitudes of A for large N in the present

*Ab

formulation leads to values of e which exceed computer limits. This in

turn restricts the values of N which can be treated. For example, N=6 was

11

T e et e e ~ o

- ———




AFML-TR-77-113

the largest value permissible for the properties assumed in [1]. Resolution '3

of this difficulty is now being considered.

Numerical results of the present solution are presented in [1].
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